| 1. | Weak - modules of n - lie algebras and invariant bilinear forms 代数的弱模与不变双线性型 |
| 2. | Invariant bilinear forms on anti - lie triple systems 反李三系的不变双线性型 |
| 3. | Associative bilinear form 结合双线性形式 |
| 4. | A class of lie algebras with a symmetric invariant non - degenerate bilinear form 一类带有非退化对称不变双线性型的李代数 |
| 5. | Associated bilinear form 相伴双线性形式 |
| 6. | Canonical bilinear form 典范双线性型 |
| 7. | The super - symmetry bilinear forms of finite - dimensional simple z - graded lie superalgebras 阶化李超代数的超对称双线性型 |
| 8. | Finally , we give a simple condition for nondegeneracy of symmetric bilinear forms on infinite dimensional vector spaces 最后,我们给出有限维向量空间中对称双线性型非退化的简单条件。 |
| 9. | The subjects to be covered include groups , vector spaces , linear transformations , symmetry groups , bilinear forms , and linear groups 涵盖的主题包括群、向量空间、线性转换、对称群、双线性结构、线性群等。 |
| 10. | The dirac stracture for lie bialgebroid ( a , a * ) is a subbundle l c a + a * , which is maximally isotropic with respect to symmetric bilinear form ( , ) + , whose section is closed under the bracket [ , ] . the dual characteristic pairs of maximal isotropic subbundle is an important conception which is used to describe maximal isotropic subbundle 李双代数胚上的dirac结构是指在对称配对( , ) _ +下极大迷向,在[ , ]下可积的子丛,对偶特征对是描述极大迷向子丛的重要概念。 |